嵌入绝缘固态基质中的稀土 (RE) 离子为量子计算和量子信息处理提供了一个有趣的平台。稀土离子的核自旋和电子晶体场 (CF) 能级可用于存储和操纵量子态。由于稀土离子量子态的相干时间较长,它们非常适合实现量子比特。最近已证明,失相时间范围从 CF 态之间的电子跃迁的 100 µ s [1] 到核跃迁的 1.3 s [2],甚至通过使用动态解耦 [3] 可长达 6 小时。此外,通过检测钇铝石榴石 (YAG) [4, 5]、钒酸钇 (YVO) [6] 和硅酸钇 (YSO) [7–9] 发射的光子,已经证明了读出单自旋态的可能性,这使得此类稀土离子系统成为量子技术的有希望的平台。一些稀土离子在电信使用的频率范围内表现出 CF 跃迁,这使得它们非常适合用作量子中继器 [10, 11]。以前利用稀土离子进行量子计算的方案提出利用 CF 态的电偶极相互作用,建议通过间接偶极阻塞效应实现 CNOT 门 [12–14]。在该方案中,来自控制量子位的偶极场会使目标量子位的跃迁频率发生偏移。这被用来实现具有脉冲序列的 CNOT 门,只有当控制位处于逻辑 1 态时,该门才有效。这里我们提出了一种基于磁偶极相互作用的更快的两量子比特门,该门的灵感来自文献 [15] 中利用硅中的磷供体实现的两量子比特门,类似于金刚石中氮空位中心的混合电子和核自旋方案 [16]。我们在图 1 中展示了基本原理,并在图 2 中展示了相关能量尺度的基础层次。
主要关键词